If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-36x+120=0
a = 1; b = -36; c = +120;
Δ = b2-4ac
Δ = -362-4·1·120
Δ = 816
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{816}=\sqrt{16*51}=\sqrt{16}*\sqrt{51}=4\sqrt{51}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-36)-4\sqrt{51}}{2*1}=\frac{36-4\sqrt{51}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-36)+4\sqrt{51}}{2*1}=\frac{36+4\sqrt{51}}{2} $
| x-3=10^x-4 | | 1/4+1/3x=1/5x+5/6 | | x+5x+(x-1)=20 | | a*a*a*a=1657a+4962 | | 2/3(y+1/9)=-2/3(y-1/6) | | 6x-19=(x-1)+11 | | x+×=250+× | | X2+8x+6=0 | | 8+2x=6x+10 | | 2p^2-p-28=0 | | (X^2-32)/(x+8)=0 | | (z+5)/1.2=3.6 | | (20x+x)+x=66 | | 6(2)-y=4 | | 2(x+8)-8=8 | | X-5(-3/5x+8)=6 | | -3(2x-5)=-6×+15 | | 6=-9/2u | | x-32=4x+24-3x-56 | | 7(4+x)=6(x-4) | | 30=10-4b | | 20p÷3=40 | | a÷5+1=16 | | 3(a-5)=3a+15) | | 3(y-2)-2=4(y-4) | | 11=15h+16 | | 20x^2+6x-10=0 | | 7/8y+1/7(y-8)=(y+1)/3 | | √3x+1=4 | | (x-2)^(2/5)=4 | | 3y+44=122 | | 50-3x=20+12x |